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ABSTRACT 

Fielded and future military systems are increasingly incorporating composite materials into their design. 
Many of these systems subject the composites to physical trauma or environmental conditions that can 
cause microdamage leading to variations of the mechanical properties on the global scale. For these 
applications, it is critical to develop the ability to accurately model the response of composite materials, 
to enable engineers to predict the reaction of the system. To address this problem, a structural based 
enrichment approach is proposed, that allows macroscale computations to be performed with the 
microstructural features explicitly considered. This strategy has an advantage in that the enriched local 
function space may be easily varied from one element to the other allowing variances in the 
microstructure, such as localized damage to the fibers.   
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INTRODUCTION 

This presentation discusses the development of a technique to numerically model the reaction of 
composite materials that are undergoing microdamage. Damage on the microstructure of composites, 
such as microcracks and fracture, can have a significant effect the global response of the system. The most 
notable effect is in the change of material properties of the composite as microcracks form and propagate. 
Though empirical data can be used to approximate the material properties for an ideal non-damaged 
specimen [1], performing experimentation on damaged composites and extracting a correlation between 
microcrack size and or quantity to material properties can be extremely difficult.  

One approach to extract material properties from a composite material without having to perform 
experimental testing is a numerical approximation method, called the homogenization method [2]. This 
method uses asymptotic expansions of field variables about macroscopic values and provides overall 
effective properties as well as microscopic stress and strain values. A limitation with this method, 
however, is that it assumes uniformity of the macroscopic fields within each representative volume 
element (RVE).  Hence, this method breaks down in critical regions of high gradients such as cracks. This 
further complicates its use for modeling microcrack phenomena, as it is in the regions of global cracks that 
microcracking will be formed.  

To overcome the drawbacks of the existing methods [3,4] proposed a structural based enrichment 
method based on the principles of partition of unity which allows enrichment of the approximation space 
in localized sub domains using specialized functions that may be generated based on a priori information 
regarding asymptotic expansions of local stress fields and microstructure. One of the major advantages of 
the partition of unity-based enrichment strategies is that the enriched local function space may be easily 
varied from one node to the other.   

In this presentation we review the development of RVE models which will correlate composite material 
properties, based on microcracking, and their incorporation into a modified structural based enrichment 
method to capture the microdamage effects. This approach can be used in regions where macrocracks 
are assumed to have initiated. In the next section, we review the homogenization and enrichment 
methods and discuss the implementation of damaged microstructures into the enrichment technique.  In 
section 3, we present an example which demonstrates the effectiveness of our approach.   

EXPERIMENTATION 
We have divided this section into three parts. Section 2.1 and 2.2 review the concepts of the 
homogenization method and structural enrichment technique, respectively. Section 2.3 discusses the 
implementation of damaged microstructures into the structural enrichment technique. 
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Figure 1. Multiscale Homogenization Approach 

Review of the Homogenization Approach 

The homogenization theory [2], assumes that a function, composed of multiple scales, can be designated 
as  

𝑓𝑓𝛾𝛾(𝑥𝑥) = 𝑓𝑓�𝒙𝒙,𝒚𝒚(𝒙𝒙)� [1] 

where x and y represent a macroscale and microscale, respectfully (see Figure 1). The scales can be related 
by a scale factor, γ, such that 

𝒚𝒚 =
𝒙𝒙
𝛾𝛾 

[2] 

A key feature of the homogenization approach is the assumption of local-periodicity on the microscale. 
Thus, if we have a representative volume element (RVE), as shown in Figure 1, with a side length of Y we 
can write  

𝑓𝑓�𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗� = 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗 + 𝑘𝑘𝑌𝑌𝑗𝑗� [3] 

where k is the periodic interval. The partial derivative for the function with respect to x can be simplified 
to 

𝜕𝜕𝑥𝑥𝑖𝑖𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� = 𝜕𝜕𝑥𝑥𝑖𝑖𝑓𝑓+ 𝛾𝛾−1𝜕𝜕𝑦𝑦𝑖𝑖 𝑓𝑓 [4] 

 

 

Using asymptotic expansion, we can write the displacement, stain and stress fields, with respect to the 
scale factor γ, as:  

2 
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𝑢𝑢𝑖𝑖
𝛾𝛾(𝒙𝒙,𝒚𝒚) = 𝑢𝑢𝑖𝑖0(𝒙𝒙,𝒚𝒚) + 𝛾𝛾𝛾𝛾𝑖𝑖1(𝒙𝒙,𝒚𝒚) + 𝒪𝒪(𝛾𝛾2) [5a] 

𝜀𝜀𝑖𝑖𝑖𝑖
𝛾𝛾 (𝒙𝒙,𝒚𝒚) = 𝛾𝛾−1𝜀𝜀𝑖𝑖𝑖𝑖−1(𝒙𝒙,𝒚𝒚) + 𝜀𝜀𝑖𝑖0(𝒙𝒙,𝒚𝒚) + 𝛾𝛾𝛾𝛾𝑖𝑖1(𝒙𝒙,𝒚𝒚) +𝒪𝒪(𝛾𝛾2) [5b] 

𝜎𝜎𝑖𝑖𝑖𝑖
𝛾𝛾(𝒙𝒙,𝒚𝒚) = 𝛾𝛾−1𝜎𝜎𝑖𝑖𝑖𝑖−1(𝒙𝒙,𝒚𝒚) + 𝜎𝜎𝑖𝑖0(𝒙𝒙,𝒚𝒚) + 𝛾𝛾𝛾𝛾𝑖𝑖1(𝒙𝒙,𝒚𝒚) +𝒪𝒪(𝛾𝛾2) [5c] 

where  

𝜎𝜎𝑖𝑖𝑖𝑖
𝛾𝛾 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘

𝛾𝛾  [6] 

is the constitutive relationship for the constituents of the RVE. In this presentation we will assume that 
the constitutive behavior of each constituent of the RVE is linear elastic and known.  

To determine the effects of the microstructure across the domain, we begin by substituting the asymptotic 
expansions into the equilibrium equation and rearranging the terms to give us: 

𝛾𝛾−2 ��𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘−1�,𝑦𝑦𝑗𝑗
�+ 𝛾𝛾−1 ��𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘−1�,𝑥𝑥𝑗𝑗

+ �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑙𝑙0 �,𝑦𝑦𝑗𝑗
�

+𝛾𝛾0 ��𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘0 �,𝑥𝑥𝑗𝑗
+ �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘1 �,𝑦𝑦𝑗𝑗

− 𝑓𝑓𝑖𝑖𝐵𝐵� + 𝒪𝒪(𝛾𝛾) = 0
 [7] 

In equation [7], Cijkl is the elastic coefficients and 𝑓𝑓𝑖𝑖𝐵𝐵 is the body force. By setting each order term to zero 
we derive the following equations 

𝑢𝑢𝑖𝑖0(𝒙𝒙,𝒚𝒚) = 𝑢𝑢𝑖𝑖0(𝒙𝒙) [8] 

�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐼𝐼𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 )�
,𝑦𝑦𝑖𝑖

= 0 𝜖𝜖ΩRVE  [9] 

�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚0 �
,𝑥𝑥𝑗𝑗
− 𝑓𝑓𝑖𝑖𝐵𝐵 = 0 𝜖𝜖Ω [10] 

Equation [8] states that 𝑢𝑢𝑖𝑖0 is only a function of the macroscale. Equation [9] is the governing equation for 
the microscale RVE, used to derive the effective elastic coefficients, where 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆  is the symmetric part 
of the spatial gradient of 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆  defined as  

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆 =

1
2
�𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑘𝑘

𝑆𝑆 +𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑙𝑙
𝑆𝑆 � [11] 

 

HS(y) is a Y-periodic tensor that relates the macroscale to the first order displacement perturbation term 
𝑢𝑢𝑖𝑖1(𝒙𝒙,𝒚𝒚) , such that: 

𝑢𝑢𝑖𝑖1(𝒙𝒙,𝒚𝒚) = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 (𝒚𝒚)𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚0 (𝒙𝒙) [12] 

Equation [10] is the governing equation for the macroscale. In the equation, 𝑪𝑪� represents the effective 
elastic coefficients and 𝒇𝒇�𝐵𝐵 is the effective body force. They are respectively defined as: 

3 
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𝐶̃𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� C𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝐼𝐼𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 +Ψmnkl

S �∂ΩRVE
ΩRVE

 [13] 

f̃iB =
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� fiB ∂ΩRVE
ΩRVE

 
[14] 

Structural Enrichment Method 

Within this section we review the partition of unity paradigm and how it is implemented, followed by the 
derivation of the enrichment functions. 

Interpolation Functions  
The partition of unity paradigm requires that the sum of all functions at a given point in a domain is equal 
to one, such that  

�𝜑𝜑𝐼𝐼0(𝒙𝒙) = 1
𝑁𝑁

𝑖𝑖=1

 [15] 

In the above equation, 𝜑𝜑𝐼𝐼0 is the Ith partition of unity function and N is the total number of partition of 
unity functions within the domain, Ω. Thus, the sum of all the functions at a given point, x, within Ω will 
equal 1. 

Based on this concept we define the global approximation space, for a method using interpolation 
functions, as: 

𝑉𝑉ℎ,𝑝𝑝 = � 𝜑𝜑𝐼𝐼0𝑉𝑉𝐼𝐼
ℎ ,𝑝𝑝

𝑁𝑁

𝐼𝐼=1
⊂ 𝐻𝐻1(Ω) [16] 

where the superscripts h and p are the size of the element and the polynomial order, respectively. H1 is 
the first order Hilbert space and 𝑉𝑉𝐼𝐼

ℎ,𝑝𝑝  is the local approximation space at I, defined as: 

𝑉𝑉𝐼𝐼
ℎ,𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚∈𝜁𝜁 {𝑝𝑝𝑚𝑚(𝒙𝒙)} ⊂ 𝐻𝐻1(𝐵𝐵�𝐼𝐼⋂Ω) [17] 

In equation [17], ζ is an index set, 𝐵𝐵�𝐼𝐼 is the support for node I and pm(x) is composed of polynomials or 
other functions. From the above equations we can write any function vh,p within the global approximation 
space as:  

𝑣𝑣ℎ,𝑝𝑝(𝑥𝑥) = �� ℎ𝐼𝐼𝐼𝐼(𝒙𝒙)𝛼𝛼𝐼𝐼𝐼𝐼
𝑚𝑚∈𝜁𝜁

𝑁𝑁

𝐼𝐼=1

, 𝑣𝑣ℎ,𝑝𝑝 ∈ 𝑉𝑉ℎ,𝑝𝑝 [18] 

where 

ℎ𝐼𝐼𝐼𝐼(𝒙𝒙) = 𝜑𝜑𝐼𝐼0(𝒙𝒙)𝑝𝑝𝑚𝑚(𝒙𝒙) [19] 

is the interpolation function at node I, corresponding to the mth degree of freedom, and 𝛼𝛼𝐼𝐼𝐼𝐼 is the 
associated degree of freedom.  

4 
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For FEA, the standard shape function, NI, which can be referenced in numerous sources, satisfies the 
partition of unity criteria for 𝜑𝜑𝐼𝐼0. For a typical finite element analysis, correlating the definition of a finite 
element shape function to the interpolation function in equation [19], requires that 𝑝𝑝𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{1}.  
Reference [5] discusses other partition of unity functions and basis’s that can be implemented. 

Enrichment Functions 
In the previous section we defined a function in the global approximation space as the sum of the partition 
of unity functions multiplied by a group of basis functions and associated degrees of freedom. Focusing 
on the basis functions, pn(x), we state that if an arbitrary function is included in the local basis of all nodes 
within the domain and assuming 𝛼𝛼𝐼𝐼𝐼𝐼 = 𝛿𝛿𝑚𝑚𝑚𝑚  ∀𝐼𝐼 then 

��𝜙𝜙𝐼𝐼0(𝒙𝒙)𝑝𝑝𝑚𝑚(𝒙𝒙)𝛼𝛼𝐼𝐼𝐼𝐼
𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁

𝐼𝐼=1

= 𝑝𝑝𝑛𝑛(𝑥𝑥)��𝜙𝜙𝐼𝐼0(𝒙𝒙)
𝑁𝑁

𝐼𝐼=1

� = 𝑝𝑝𝑛𝑛(𝒙𝒙) [20] 

Equation [20] demonstrates that it is possible to exactly reproduce a function over the entire domain. This 
fundamental concept enables the consistency of the interpolation functions to be adjusted based on the 
population of the basis functions. Thus, we can expend the basis function to include relevant functions to 
enforce a known displacement field. Recalling that the basis for a standard FEA analysis is𝑝𝑝𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{1}, 
and incorporating the asymptotic response about a crack tip, a common enrichment technique is to adjust 
the basis to 

𝑝𝑝𝑚𝑚(𝒙𝒙) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1,√𝑟𝑟� [21] 

Using this adjusted basis within the region of a crack tip will enable the interpolation functions to 
reproduce the √𝑟𝑟 field. If the crack tip is not at the origin of r the degree of freedom associated with the 
enrichment function should solve to zero, thus removing the effects of the enrichment term on the 
displacement field. 

To derive the structural based enrichment function, we begin by examining the asymptotic expansion of 
the displacement field given in equation [5a]. Substituting equations [8] and [12] into [5a] and assuming 
𝒪𝒪(𝛾𝛾2) approximation gives us: 

𝑢𝑢𝑖𝑖
𝛾𝛾(𝒙𝒙,𝒚𝒚) = 𝑢𝑢𝑖𝑖0(𝒙𝒙) + γ �𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 (𝒚𝒚)𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚0 (𝒙𝒙)� [22] 

For a single-scale problem, we define the displacement field, assuming linear consistency in 2D, as 

𝑢𝑢𝑖𝑖
𝛾𝛾(𝒙𝒙) = 𝑢𝑢𝑖𝑖0(𝒙𝒙) = ��𝜙𝜙𝐼𝐼0(𝒙𝒙)𝑝𝑝𝑚𝑚(𝒙𝒙)𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼

𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁

𝐼𝐼=1

 
 

[23] 

where 𝜑𝜑𝐼𝐼0and pm are NI and 𝑝𝑝𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{1}.  

To perform a multiscale analysis we need to incorporate the second term on the right hand side of 
equation [22]. We focus on the Y-periodic tensor, HS(y). Recalling that y is a function of x, equation [2] and 
assuming HS(y(x)) is the dominant term, we can write the relation: 
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γ �𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 (𝒚𝒚)𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚0 (𝒙𝒙)�=  �𝜙𝜙𝐼𝐼0(𝒙𝒙)𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �𝒚𝒚(𝒙𝒙)�𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑁𝑁

𝐼𝐼=1

 [24] 

Substituting [23] and [24] into [22] gives us: 

𝑢𝑢𝑖𝑖
𝛾𝛾(𝒙𝒙) = ��𝜙𝜙𝐼𝐼0(𝒙𝒙)𝑝𝑝𝑚𝑚(𝒙𝒙)𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼

𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁

𝐼𝐼=1

+�𝜙𝜙𝐼𝐼0(𝒙𝒙)𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �𝒚𝒚(𝒙𝒙)�𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑁𝑁

𝐼𝐼=1

 [25] 

Rearranging [25] and incorporating the degrees of freedom vector β into α reduces [25] to  

𝑢𝑢𝑖𝑖
𝛾𝛾(𝒙𝒙) = ��𝜙𝜙𝐼𝐼0(𝒙𝒙)𝒑𝒑𝑚𝑚𝑚𝑚 (𝒙𝒙)𝜶𝜶𝐼𝐼𝐼𝐼𝐼𝐼

𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁

𝐼𝐼=1

 [26] 

The enrichment function can be defined as: 

ℱ𝑚𝑚𝑚𝑚𝑚𝑚1 (𝒙𝒙) = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �𝒚𝒚(𝒙𝒙)� [27] 

One significant observation is that incorporating the enrichment function requires that the basis be 
dependent on the coordinate direction. For example, a two dimensional finite element analysis would 
have the enriched basis in the x1-direction, as 

𝑝𝑝𝑚𝑚1 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1,𝐻𝐻111𝑆𝑆 �𝒚𝒚(𝒙𝒙)�,𝐻𝐻221𝑆𝑆 �𝒚𝒚(𝒙𝒙)�,𝐻𝐻121𝑆𝑆 �𝒚𝒚(𝒙𝒙)�� [28] 

while for the x2-direction the enriched basis is 

𝑝𝑝𝑚𝑚2 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�1,𝐻𝐻112𝑆𝑆 �𝒚𝒚(𝒙𝒙)�,𝐻𝐻222𝑆𝑆 �𝒚𝒚(𝒙𝒙)�,𝐻𝐻122𝑆𝑆 �𝒚𝒚(𝒙𝒙)�� [29] 

In generic form for a finite element simulation, the basis can be written as 

𝑝𝑝𝑚𝑚𝑚𝑚 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{1,ℱ𝑚𝑚𝑚𝑚𝑚𝑚1 (𝒙𝒙)} [30] 

Implementation the Multiscale Enrichment Technique 

The approach to implementing structural based enrichment varies depending on the governing method. 
In this presentation we will focus in the FEA approach. Reference [3] gives complete details on the 
implementation of the multiscale enrichment into FEA. In this section we will briefly review how the 
algorithm is applied. 

The analysis is based on a homogenization-like integration (HLI) scheme [3]. The sol’n requires the 
enrichment function, calculated using equation [9], and the material properties, which are only known on 
the microscale, y. To implement this technique and resolve the aforementioned issue, integration will be 
performed on an RVE transformed to the macroscale, x, coordinate system. The HLI scheme, shown in 
Figure 2, is based on the assumption that there is a significant deference between the two scales and that 
the Gauss points used for FEA are sparse with respect to the size of the RVE. In this approach, an RVE is 
centered on each Gauss point within macroscale problem. An integrand, I, on the macroscale is replaced 
with the following  
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𝐼𝐼 = � 𝐽𝐽𝐽𝐽 ∂Ω
Ω

= � 𝑊𝑊𝑖𝑖𝐽𝐽𝑖𝑖𝓋𝓋�𝒙𝒙𝑖𝑖𝐺𝐺𝐺𝐺�

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑖𝑖=1

= � 𝑊𝑊𝑖𝑖𝐽𝐽𝑖𝑖
1

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
� 𝓋𝓋(𝒙𝒙)∂Ω�iRVE
Ω� i
RVE

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑖𝑖=1

 [31] 

Where 𝓋𝓋 is an arbitrary function, 𝒙𝒙𝑖𝑖𝐺𝐺𝐺𝐺 is the ith Gauss point, 𝛺𝛺�𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅 is the domain of an RVE centered on the 
ith Gauss point, J is the Jacobian and Wi is a weight associated with the ith Gauss point. [3] has demonstrated 
that the accuracy of HLI improves with decreasing size of the RVE. Thus, this implementation works well 
when the difference in scales is significant. However, as the scales become closer and the therefore the 
volume of the RVE increases, equation [31] will develop convergence errors.  

 
Figure 2. Implementation of multiscale enrichment into FEA 

Flow Chart of Structural Based Enrichment Algorithm 
In this section, we discuss the algorithm for the structural based enrichment method depicted in Figure 3. 
We begin the analysis by deriving the HSfrom the RVE and material properties provided. HS is then inputted 
into the macroscale structural problem which solves for the displacement, stress and strain fields. 

 

 

Figure 3. Flow Chart of Structural Enrichment Approach 
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Implementation of Damaged Microstructure 

We now focus, in this section, on the RVE and how microdamage can be incorporated into the model. For 
many applications the material used in the multiscale model is some type of fiber composite, such that 
the microstructure can be presented as a fiber within a matrix (see Figure 4a) for a 2D application, and a 
section of the fiber weave (see Figure 4b) for 3D simulations. 

 

Figure 4. Microstructures for a Fiber Composite 

For normal conditions, these RVEs can be used to represent the microstructure; however, these multiscale 
methods are specifically designed for critical regions, such as in the vicinity of a global crack, where fiber-
matrix is likely to be damaged on the microscale as well.  

 

Figure 5. Damaged Matrix Microstructures for a Fiber Composite 

To account for microdamage, the RVEs are modified to incorporate varying levels of cracks. Figure 5 gives 
examples of several cases where cracks are imbedded into the microstructure matrix.  

The cracks on the RVE are modeled as geometric damage in the simulation, such that there is no 
connectivity across a crack on elements within the RVE neighboring the crack. As a pre-step to solving the 
global problem, we solve equation [9] on the damaged RVE to produce a set of damaged enrichment 
functions, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆−𝐷𝐷. The damaged enrichment functions are then incorporated into model within the vicinity 
of a global crack, see Figure 6. 
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Figure 6. Critical Region Around Global Crack 

The algorithm for the modified enrichment method is given pictorially in Figure 7. We begin the analysis 
by deriving the HS and HS-D from the RVE and material properties provided. 𝑯𝑯𝑆𝑆 and 𝑯𝑯𝑆𝑆−𝐷𝐷are then inputted 
into the macroscale structural problem, in the form of enrichment functions. The enrichment functions 
derived from the damaged RVE, 𝑯𝑯𝑆𝑆−𝐷𝐷, are applied to elements within the vicinity of the critical region, 
while the remaining elements within the global model are enriched with functions derived from the 
standard RVE, 𝑯𝑯𝑆𝑆. The profile of the critical region is dependent on criteria provided by the modeler.  

 

Figure 7. Critical Region Around Global Crack 

RESULTS 
We examine a two-dimensional cross section of a damaged composite wafer, depicted in Figure 8, 
containing a center crack. A pressure load is applied to the upper and lower surfaces to force open the 
crack and a temperature change is implemented to induce thermal stress. The additional enrichment 
functions used to capture the thermal stress is reviewed in [5]. In this example we assume plane stress 
conditions and examine the upper right quadrant of the cross sectional area. We assume the composite 
is composed of graphite fibers, all orientated perpendicular to the cross section, within an epoxy matrix. 
The material properties are given in Table 1. The RVEs, are modeled using 500 quadratic 2nd order 
elements, where the enrichment functions generated from the damaged RVE’s are applied to the global 
region encompassed by the yellow boundary and the enrichment function generated from the standard 
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RVE is applied throughout the remainder of the model. The boundary conditions on the global model are 
a 40 MPa pressure pulling on the upper and lower surfaces of the wafer, and a heat source increasing the 
upper and lower surfaces to 1080℃. The results are compared to a fine mesh composed of 1.8e6 
quadratic 2nd order elements modeled down to the microscale.  

Table 1. Material Properties of RVE 

Material 
Elastic Modulus 
(MPa) 

Poisson’s 
Ratio 

Thermal Conductivity 
(mW/(mmC)) 

Coefficient of Thermal 
Expansion (ͦC-1) 

Epoxy 3450 0.35 4.47 5.4x10-5 

Graphite 700 0.485 2.4 1.2 x10-5 

 

 

Figure 8. Damaged Composite Sample 

 

 

Figure 9. RVE Damaged Orientations 

We begin the analysis by examining several crack orientations shown in Figure 9. For this analysis, the 
homogenization simulation is run using 900 quadratic 2nd order elements, with the effective material 
properties generated from a damaged RVE applied to the critical region around the crack. To compare the 
orientations, we examine the strain energy resulting from the simulation with respect to the results from 
the fine mesh which produced a strain energy of 882.4 MPa. Table 2 shows the resulting relative error in 
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the strain energies.  The results show that the orientation does not make significant difference in error 
generated. The RVE containing diagonal cracks with twice the crack length as the other orientations 
(Figure 9e) produced slightly more accurate results. 

 

 

Table 2. Strain Energy Errors 

Technique Strain Energy (MPa) Error (%) 

Fine Mesh 882.4 - 

Figure 9a 213.2 75.8 

Figure 9b 213.3 75.8 

Figure 9c 214.0 75.7 

Figure 9d 214.0 75.7 

Figure 9e 216.8 75.4 

 

We next examine both the homogenization and the enrichment techniques using 900 quadratic 2nd order 
elements, again examining the strain energy of the model. Table 3 shows that the homogenization method 
using the damaged RVE does not show much improvement in the strain energy calculations, with less than 
a % difference between the two simulations. Using the enrichment method without any damaged RVEs 
still reduced the error by 6% over the homogenization approaches. When using the enrichment method 
along with the damaged RVE reduced the error to 60.4%, a 15% improvement over the homogenization 
method.  

Table 3. Strain Energy Errors 

Technique Strain Energy (MPa) Error (%) 

Fine Mesh 882.4 - 

Homogenization w/o 
Damaged RVEs 

213.1 75.8 

Homogenization with 
Damaged RVEs 

216.8 75.4 

Enrichment w/o 
Damaged RVEs 

273.5 69.0 

Enrichment with 
Damaged RVEs 

349.7 60.4 
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CONCLUSIONS 
In this paper we have derived the enrichment functions for microdamage in a heterogeneous medium. 
This method uses a structural based enrichment technique, allowing macroscale computations to be 
performed with the microstructural features explicitly considered. In section three we have demonstrated 
that using the enriched approach with damaged RVEs reduces the error, for the problem shown, by 15%. 
We are continuing this research for dynamic problems and are expecting to compare the results with 
experimental data. 
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